e-Learning Ecologies MOOC’s Updates

Educational data mining

Educational data mining (EDM) is an emerging discipline that describes a research field concerned with the application of data mining, machine learning and statistics to information generated from educational settings (e.g., universities and intelligent tutoring systems). At a high level, the field seeks to develop and improve methods for exploring this data, which often has multiple levels of meaningful hierarchy, in order to discover new insights about how people learn in the context of such settings. In doing so, EDM has contributed to theories of learning investigated by researchers in educational psychology and the learning sciences. The field is closely tied to that of learning analytics, and the two have been compared and contrasted.

Definition

Educational data mining refers to techniques, tools, and research designed for automatically extracting meaning from large repositories of data generated by or related to people's learning activities in educational settings. Quite often, this data is extensive, fine-grained, and precise. For example, several learning management systems (LMSs) track information such as when each student accessed each learning object, how many times they accessed it, and how many minutes the learning object was displayed on the user's computer screen. As another example, intelligent tutoring systems record data every time a learner submits a solution to a problem; they may collect the time of the submission, whether or not the solution matches the expected solution, the amount of time that has passed since the last submission, the order in which solution components were entered into the interface, etc. The precision of this data is such that even a fairly short session with a computer-based learning environment (e.g., 30 minutes) may produce a large amount of process data for analysis.

In other cases, the data is less fine-grained. For example, a student's university transcript may contain a temporally ordered list of courses taken by the student, the grade that the student earned in each course, and when the student selected or changed his or her academic major. EDM leverages both types of data to discover meaningful information about different types of learners and how they learn, the structure of domain knowledge, and the effect of instructional strategies embedded within various learning environments. These analyses provide new information that would be difficult to discern by looking at the raw data. For example, analyzing data from an LMS may reveal a relationship between the learning objects that a student accessed during the course and their final course grade. Similarly, analyzing student transcript data may reveal a relationship between a student's grade in a particular course and their decision to change their academic major. Such information provides insight into the design of learning environments, which allows students, teachers, school administrators, and educational policymakers to make informed decisions about how to interact with, provide, and manage educational resources.

History

While the analysis of educational data is not itself a new practice, recent advances in educational technology, including the increase in computing power and the ability to log fine-grained data about students' use of a computer-based learning environment, have led to an increased interest in developing techniques for analyzing the large amounts of data generated in educational settings. This interest translated into a series of EDM workshops held from 2000 to 2007 as part of several international research conferences. In 2008, a group of researchers established what has become an annual international research conference on EDM, the first of which took place in Montreal, Quebec, Canada.

As interest in EDM continued to increase, EDM researchers established an academic journal in 2009, the Journal of Educational Data Mining, for sharing and disseminating research results. In 2011, EDM researchers established the International Educational Data Mining Society to connect EDM researchers and continue to grow the field.

With the introduction of public educational data repositories in 2008, such as the Pittsburgh Science of Learning Centre's (PSLC) DataShop and the National Center for Education Statistics (NCES), public data sets have made educational data mining more accessible and feasible, contributing to its growth.

Goals

Ryan S. Baker and Kalina Yacef identified the following four goals of EDM:

  1. Predicting students' future learning behavior – With the use of student modeling, this goal can be achieved by creating student models that incorporate the learner's characteristics, including detailed information such as their knowledge, behaviours and motivation to learn. The user experience of the learner and their overall satisfaction with learning are also measured.
  2. Discovering or improving domain models – Through the various methods and applications of EDM, discovery of new and improvements to existing models is possible. Examples include illustrating the educational content to engage learners and determining optimal instructional sequences to support the student's learning style.
  3. Studying the effects of educational support that can be achieved through learning systems.
  4. Advancing scientific knowledge about learning and learners by building and incorporating student models, the field of EDM research and the technology and software used.

Culled From: https://en.wikipedia.org/wiki/Educational_data_mining and http://educationaldatamining.org/